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Abstract

In the development of numerical schemes for compressible multifluids, the treatment of the interface is very im-
portant. In this paper, we proposed a numerical method based on interface interactions where the ghost cells of the
ghost fluid method, GFM [J. Comput. Phys. 152 (1999) 457], are determined by solving the real interface interaction
and the hypothetical “ghost” interaction. Extensive tests in 1D are carried out and with the 2D examples suggest that
the present scheme is able to handle multifluids problems with large difference of states and material properties at
interface while still keeping to the simplicity of the original GFM.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Various numerical methods have been developed to simulate and study the dynamics of compressible
multifluids in a wide range of high speed flow phenomena, such as the dynamics and the stability of shock
interface interaction, supersonic mixing processes, high speed bubbly flows, underwater explosion and
many others. Invariably, a relative dominant difficulty for these numerical computations is the treatment
of material interfaces. For Eulerian schemes, in general, there are two main approaches: one is the rather
complicated front tracking method in which the interface is tracked as an internal moving boundary and a
non-smeared interface can be materialized [15,16]; the other is the relatively simpler front capturing method
in which the interface is defined as a steep gradient and hence the latter is allowed to be smeared over a
narrow band. For the latter, some specific examples are VOF (volume-of-fluid) (see [1,21,41]) and CIP
(constrained-interpolation-profile) (see [40]). Even though the interest in the present work concerns
compressible multifluids, it may be mentioned that these methods have been also used for incompressible
fluids. Still, there are other methods for interface treatment, such as the immersed boundary method [23]
and phase field method [14], which are usually employed for incompressible multifluids.
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To obtain a non-smeared interface and avoid the complexity of front tracking, the employment of
level set function enables a combination of the above-mentioned two approaches [30], in which the in-
terface is treated as inner boundaries and the front movement is captured by a level set function. In the
original work by Mudler et al. [28], the interface is still allowed to be smeared to a certain thickness
artificially. In [7,6,25,26], smearing at the interface is avoided by solving the Riemann problem to correct
for the numerical flux near the interface. However, as noted by Fedkiw et al. [10], these schemes can be
and is usually fairly intricate and can perhaps only be extended to multidimension with dimensional
splitting in time.

The ghost fluid method (GFM) [10], on the other hand, offers a fairly simple way to implement in
multidimension and with multilevel time integrals. This method relies entirely on the abilities to produce
ghost cells and their states on the respective medium that satisfy the appropriate boundary conditions at the
interface and is proposed to solve the multifluids problem by using standard one-phase solvers for each
medium. Therein also lies in the versatility of the GFM in the accommodation of any reasonable and
consistent one-phase solvers. While the GFM presents promising results, it may yet face some difficulties
when a strong shock wave passes and interacts with the interface [27]. Abgrall and Karni [1] proposed
another similar but simpler single fluid method (SFM). However, the SFM may not be so suitable when
there is density limitation in the equation of states like Tait’s equation for the water medium and it is
unclear if this method can handle those difficulties encountered by the GFM. Fedkiw et al. [11] proposed a
method which incorporates solving the Rankine-Hugoniot relation pertaining to the detonation or def-
lagration discontinuity. In a subsequent review, Fedkiw [12] also suggested solving the Riemann problem at
the interface. In a separate development, to overcome the difficulties encountered for air-water interaction,
Fedkiw [13] presented a modified GFM which also eliminates the oscillations at the air—water interface.
However, this modified GFM seems to be air—water interaction specific such that there is a very large sound
impedance change across the interface. Recently, Liu et al. [27] proposed a method by solving the shock—
shock relation of the Riemann problem near the interface, in which the proposed interface states are ap-
plied to locations some distance away from the interface. As the interaction is not solved at the interface,
this method may give rise to difficulties in maintaining accuracy at the interface and is also relatively much
less straightforward in its implementation and extension to multi-dimensional problems with complex
interfaces.

The motivation of this paper stems from the difficulties and concerns of the presence of a sufficiently
strong shock in multifluids problem with possible large differences of states and material properties at the
interface. We propose a interface interaction method which solves for two types of interaction: one is the
real interaction at the interface, the other is a (hypothetical) ghost interaction between the real fluid
and ghost fluid. Using the method of characteristics and the interaction solved for directly at the interface,
the ghost cell properties for the respective medium are defined within a narrow band next to the interface;
the ghost fluid and the real fluid co-exist and the scheme allows for calculation in the interface region as if in
a single medium domain just like the original GFM. Therefore, by keeping to the simplicity of the GFM, it
is rather straightforward in extending to multi-dimensional problems with complex interfaces. In addition,
as suggested in Fedkiw [12], we also propose improved updating of velocity in the level set function
calculation for a general interface so as to increase the accuracy of the interface location.

2. Preliminaries

2.1. Euler equations

Assuming the fluid is inviscid and compressible, the flow can be described by Euler equations in two
dimensions
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This set of equations describes the conservation of density p, momentum pv = (pu, pv) and total energy
density E = pe + % pu®, where e is the internal energy per unit mass. The one-dimensional Euler equations
are obtained by setting v = 0.

To close this set of equations, the equation of states (EOS) must be defined to give the relation between
pressure, density and internal energy. There are several forms of EOS for different materials, but all can be
written generally as p = p(p, e). If the entropy is kept constant, an isentropic EOS results and can be written
as p = p(p,so). Here, the pressure is determined by density directly.

2.2. Level set equation

Consider a moving interface I'(¢) separating the domain Q(¢). We associate Q(¢) with a signed distance
function ¢(x, y,¢), thatis V|¢| = 1, called the level set function [30]. Knowing ¢ we may locate the interface
by finding the zero level set of ¢. That is I'(¢) = {x,y : ¢(x,y,¢) = 0}. So the movement of the interface is
equivalent to the updating of ¢. We can use the level set equation

¢+ up, +vh, =0 2)

to update all the level sets, where u and v are the velocity components for the level sets in x and y directions.

For compressible multi-material flows, the interface velocity is usually not known, hence the movement
of the zero level set at interface is approximated by updating level sets on the nearest grid points. As the
speed near the interface may change very rapidly or become a discontinuity as the interface moves, the
solution of Eq. (2) often becomes very flat and/or steep at the interface. Therefore, ¢ needs to be re-ini-
tialized to be kept as the signed distance. The re-initialization equation can be written as

¢ +sen(P) (Vo[ - 1) =0, 3)

where 7 is fictitious time, sgn(¢) is a sign function and is usually approximated by a smooth function
[31,37]. The equation is updated in fictitious time-step, such as At = Ax/2. For a given ¢, this equation can
be solved to steady state after sufficient t-steps. As re-initialization is needed for the whole domain, the fast
marching method [34] can also be used to increase efficiency, in which case the Eikonal equation |V¢| = 1 is
solved directly. For the flows with strong shock waves, ¢ may need to be re-initialized at every time-step.
However, re-initialization at every time-step can lead to the movement of the zero level set and must be
performed extremely carefully; otherwise serious difficulties will result, such as large mass loss.

In the computation of compressible multifluids, smooth or constant extension of a quantity ¢ is
sometimes needed. For example, in the GFM, flow variables are needed to be extended into the ghost cells.
We use the extending equation

g. +N-Vg=0 4)

to extend quantities to their neighborhood. Here =N is the positive and negative normal direction of the
level set and used to decide the extending direction [10]. +N is used to extend quantities from regions ¢ < 0
to regions ¢ > 0, while —N is used to extend quantities from regions ¢ > 0 to regions ¢ < 0. Again, for a
given ¢, the extending equation can be solved to steady solution.
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2.3. Ghost cells

As the interface serves to separate two distinct media, the two associated flow fields are to be solved
separately. In a finite difference implementation, special care is needed when the grid points of the difference
stencil is cut by the interface. As such, the states on the other side of the interface can not be used directly
which can and usually leads to serious oscillations. These “missing’ points can be filled by the so called
ghost cells (collocated with the real cells but separated by the interface). Therefore, both the two fluids have
their own real cells and ghost cells. The presence of ghost cells allows the two fluids to be calculated
separately as a single fluid and makes the interface “invisible” during the computation.

The ghost cell can be considered to be first introduced to the front tracking method by Glimm et al. [15],
in which the states of the ghost cells are extrapolated from nearby point from the same side. For the GFM
based on level set tracking [10], a narrow band of ghost cells is defined in the vicinity of the interface. At the
ghost cells, the ghost fluid is defined with the same pressure and normal velocity of the real fluid and the
ghost cell density is obtained from constant entropy extrapolation. For the SFM, the ghost cells are defined
by directly copying the pressure, normal velocity and density from the real cells. In the modified GFM [13]
for the air-water interaction, the normal interface velocity is obtained from the water side and the pressure
at the interface is obtained from the air side.

3. The interface interaction method

In our method, the ghost cell states are defined according to the interface interactions. We firstly de-
termine the interface condition. That is, the interface velocity, pressure and densities are obtained by
solving the real interface interaction of the two fluids. Then two hypothetical interactions called ghost
interactions are defined between each ghost fluid and its corresponding real fluid. In each ghost interaction,
the real fluid reaches the same interface condition as that of the real interaction. As higher order extrap-
olation may be used to calculate more accurate states near the interface, the interface condition can also be
obtained with higher order accuracy by involving more nodes. Hence, the ghost cell states are also cor-
respondingly evaluated. Therefore, the present method can lead or be extended to a possible higher order
for multifluids problems. However, for simplicity, the discussion in this paper is based on the first order
extrapolation only.

For this method, we propose two assumptions: (a) the interactions take place at the interface, (b) there is
no entropy exchange between the two fluids throughout the interaction. With the first assumption, unlike
Liu et al. [27] in which the interaction takes place at some distance away from the interface, the interaction
process is controlled by the two fluid states directly at the interface and any other flux into the interaction
region is neglected. The second assumption followed that by Fedkiw et al. [10], where there is no heat
transfer and mass diffusion through the interface and energy exchange at the interface is only via work. This
assumption is applicable even when there is a shock passing through the interface. This is because the
interface interaction can be described by a Riemann problem essentially without any entropy exchange.
Usually, there are many ways to solve the Riemann problem for the interface interaction, such as the exact
Riemann solver and different types of approximate Riemann solvers. In this work, we use the method of
characteristics [33] to solve both the real and ghost interactions at the interface.

3.1. Interface condition
Assume that the adjacent grid cells have two different fluids and their states are W; = W = (p, u, p1) and

Wi = W = (p;, ur, pr), as shown in Fig. 1. According to the first assumption, as first-order extrapolation is
used, the states of the two half-fluid cells nearest to the interface are utilized in the interaction, and the
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Fig. 1. Schematic for the interface interaction.

interface position remains unchanged (see Fig. 1). In line with the second assumption, different EOSs can be
used for the two particular fluids under investigation. After the interaction, the interface takes on the in-
terface velocity u; and pressure p;. The densities of the two fluids near the interface have also changed to py,
and py, respectively. With the method of characteristics, we have the relations '

DI d
Uy = — / L (5)
n pl.,scl«,S
Pl d
W= u. + / P (6)
Dr pr,scr-,s
1= pi(pr 1), (7)
= pe(pisse), (8)

where p; g, c1s and p, g, ¢ are the densities and sound speeds determined by the respective isentropic EOS,
p =pi(p,s) and p = p,(p,s;). Here s; and s, are the respective constant entropies on the left and right sides
of the interface. The unknown variables u;, pi, p;; and p;, can be obtained by solving Egs. (5)~(8). In
Appendix A.1, the detailed method for the gas—gas and gas—water interface conditions are described.

3.2. Defining the ghost cells

Suppose the real cell state W = (p;,u,pr) in the left cell j interacts with the ghost cell state
Wa = (pg, Ug, pa) in the right cell j + 1, as shown in Fig. 2. Both the real and ghost cells are treated with the
same EOS as for the left medium. The same assumptions are also applicable to the ghost interaction at the
cell wall j + 1/2 which takes on the functional role as the interface. After the ghost interaction, the interface
assumes the velocity u, and pressure p,. The densities of the two sides at the cell wall are also changed to p,,
and p, ., respectively. We set the interface velocity, pressure and density on the real fluid side to be equal to
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Fig. 2. Schematic for defining the ghost cells.

those after the real interaction, i.e. uy = uy, p; = p1, and p,; = py;; this implies that both the ghost and real
interactions give the same interface condition for the real fluid. Therefore, the ghost cell states can be
obtained by solving

Pl d
Uy = g + / i ) )
Pgl pgl:scgl’s
Pat = fs(Pg:Sa1), (10)

with the given interface condition of u; and p;. Here py and ¢y are the density and sound speed deter-
mined by the isentropic EOS on the left medium, and s, is the ghost cell entropy throughout the inter-
action. However, one may note that there is no unique solution for the ghost interaction problem. While
Eqgs. (9) and (10) are satisfied, the ghost cell states may be different by choosing various combinations of
two variables from density, pressure or velocity. Here, we shall consider two simplest cases:
o Algorithm A

We define the ghost cell pressure as that at the interface after the real interaction, i.e.

Pgl = D1 (11)
Hence the integral in Eq. (9) becomes zero and the ghost cell velocity is
Uy = U. (12)

Furthermore, one can find that any ghost cell density can satisfy Eq. (9). We define the ghost cell density

by isentropic extrapolating, i.e. sy = s1. Therefore, the ghost cell density on the right side can be com-

puted directly by py = fi(pg,51). See Appendix A.2 for details on gas-gas and gas-water interactions.
o Algorithm B

We define the ghost cell pressure and density by constant extending, i.e.

Pg = D1, (13)

Pg = Pr- (14)
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Hence, from Egs. (5) and (9), we obtain the ghost cell velocity as
Uy = 2uy — uy. (15)

As the real and ghost fluids have the same pressure after the ghost interaction (see Fig. 2), via isentropic
condition, we have

P11 = Pggl (16)

for both Algorithm A and B. One can find further that the above two cases are equivalent for the ghost
interactions because both the real and ghost fluid give rise to the same interface conditions of velocity,
pressure and densities. It may be noted that the ghost cell states in Algorithm B has the same form of the
boundary conditions as for a moving piston (see also [20,9]. Therefore, one may interpret that the physical
meaning or outcome of the two algorithms as if the interface is treated as a piston and the velocity of the
moving piston is determined by the interface interaction. One may also find that, from the interface con-
dition, the energy exchange rate between the two fluids is pyuy; this is the same as that between the real and
ghost fluids for the same p; and u; are obtained from the ghost interaction. In the numerical tests of Section

6, it is found that Algorithm B faces some difficulties when there is strong rarefaction wave near the in-

terface (Case I-A and Case II-A) even though it works well for the other problems considered. In our

implementation, we primarily use Algorithm A to determine the ghost cell states for its greater robustness.

It may noted that our attention is brought to the very recent work of Arienti et al. [2] who used a piston-like

boundary to solve for the fluid-structure interaction problem. However, it differs from Algorithm B in that

the interface velocity for the latter is calculated by solving the Riemann problem not applicable to former.

Similarly, for the real cell state W; = (p, u;, pr) in cell j + 1, the ghost cell state Wy, = (py, gr, pyr) in cell j
can also be defined by a ghost interaction with the EOS on the right. To avoid possible “over heating”
errors, an isobaric fix [9,10] is introduced from j — 1 to j and j+ 2 to j+ 1 before solving the interface
interaction problem. For the gas medium, the isentropic fix for one node near the interface seems sufficient
for our method. For the water medium, the isobaric fix is not used as Tait’s equation is only dependent on
pressure. For nodes to the left of j or the right of j + 1, the ghost states are simply extended or isentropic
extrapolated from Wy and W, respectively. Choosing either presents no significant difference for the final
results.

Here, we make the following observations:

o Besides the simplicity, the other reason we propose Algorithm A among the various non-unique solu-
tions of Egs. (9) and (10) is because of its generality. In Algorithm A the ghost density can be arbitrarily
defined while still keeping to the interface condition. This makes the algorithm easily employed with dif-
ferent types of EOS even those with density limitation.

e Although the above algorithms are proposed based on the method of characteristics, it may be noted
that other interface interaction solvers can also be implemented. For example, algorithms can be formu-
lated based on exact or even other approximate Riemann solver in a similar fashion as for the present
method of characteristics. The basic idea remains that of real and ghost interactions giving rise to the
same interface condition as for the real fluid and hence determining the ghost cell properties. In this pa-
per, the method of characteristics is suggested for its simplicity and ease of implementation. As will be
shown in Section 6, the method of characteristics is deemed sufficient to produce reasonable results
which concur with analysis even for very stiff problems.

e In the present method, as the ghost cell density is different from the real density, there is strictly no con-
servation kept at each time-step. However, we expect the conservation error can be reduced or mitigated
because the conservation properties is also controlled by a moving piston boundary condition. This will
be discussed further in Section 6.4 based on specific numerical examples.
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4. Implementation in multidimension

For one dimension, the above interface interaction method is simple and easily implemented. For higher
dimensions, as more velocities components are involved, we only need to consider the interface interaction
in the normal direction to the interface and hence the normal velocity component is required. In the
procedure below, with respect to the direction normal to the interface (or interaction), we shall define the
cells with ¢ < 0 as on the left and the cells with ¢ > 0 as on the right.

1. Extend p, p, u, v along the normal direction to the ghost cells in a narrow band near the interface for the
two fluids using Eq. (4).

. Calculate the normal velocities of the all the cells in the narrow band.

. Solve the interface conditions for the real interaction along the normal direction via Eq. (5) to Eq. (8).

. Compute the ghost cell state values by solving the ghost interaction given in Eq. (9) to Eq. (15).

. Update the ghost cell velocity components by replacing the normal velocity components obtained from
the ghost interaction.

6. Update the real cell values of the two fluids separately using the respective one-phase solvers.

W W N

5. Modification of level set updating

As the interface velocity has been computed at the interface, the zero level set is then moving at the exact
interface velocity. Therefore, we update the zero level set function in Eq. (2) with solved interface velocity.
This has also been employed by Fedkiw et al. [11] for the detonation waves and suggested by Fedkiw [12].
As the more accurate advection velocity is used, the re-initialization procedure is not implemented for the
immediate region next to the interface. The re-initialization is only needed for the regions away from
narrow band to maintain a signed distance to the interface. The level set updating with the main solver is
given as follows:

1. Calculate the interface conditions for all cells in the narrow band and set the calculated interface velocity
for level set updating.

2. Set the ghost cell values, and update the whole flow fields.

3. Update the level set via Eq. (2) only in the narrow band.

4. Re-initialize the level set via Eq. (3) for cells outside the narrow band.

The TVD Runge-Kutta method [35] may be used for time integration where a full time-step is made up of

several sub-time-steps. While the interface condition and the ghost cell values may be computed at every

sub-time-step, the the level set updating and re-initialization are computed once in the full time-step. As the

calculated interface velocities in the narrow band are very close, the t-steps for Eq. (3) can be reduced

comparing to that of the GFM [10]. Usually, one can only requires about five z-steps to give a good signed

distance function.

6. Numerical examples

The following numerical examples are provided to illustrate the ability of the interface interaction
method, which is denoted as I-GFM, to handle multifluids with large difference of states and material
properties at the interface. We shall denote the original ghost fluid method as GFM [10], the single fluid
method as SFM [1], and the modified ghost fluid method as M-GFM [13]. For all the test cases, unless
otherwise stated, the one-phase calculations are carried with fifth-order WENO-LF which is a robust high
order conservative scheme [22,36] and third-order TVD Runge-Kutta method [35]. Before the three sub-
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time-steps of TVD Runge-Kutta method, the interface condition is solved once. After the ghost states are
defined, the time-steps for the two fluid regions including ghost cells are calculated separately under
Courant—Friedrich-Lewy time-step restriction; the smaller one is chosen as the overall time-step. For
the one-dimensional examples, unless otherwise stated, the number of grid points employed is 200 and
the referenced exact solution is sampled on 200 grid points too. All the runs are carried out with the CFL of
0.6.

6.1. Shock tube problems (1)

Case I-A: We consider a air—helium shock tube problem with the following initial data:

_ [(1,0,1,1.4) if x <0.5,
(psu,p,7) = { (0.125,0,0.1,1.667) if x > 0.5. "

The typical results at time ¢ = 0.15 computed with the I-GFM with Algorithm A (denoted as I-GFM-A),
GFM, SFM and I-GFM with Algorithm B (denoted as I-GFM-B) are shown in Fig. 3. One can observe
that the [-GFM-A shows good compatibility with the original GFM and gives almost identical and correct
shock strength and speed. The interface position is also captured accurately. One may also note that the
SFM exhibits a slight degree of smearing at the contact discontinuity of the density plot. While the I-GFM-
B predicts a broadly correct solution, it introduces larger errors at the location of the rarefaction wave.
Further numerical tests show that the stronger the rarefaction wave near the interface, the larger is the
discrepancy from analysis. For interactions with very strong rarefaction wave, such as for Case II-A in
Section 6.3, Algorithm B faces much difficulties. The results of other problems without the presence of
strong rarefaction waves depict almost similar behavior as for Algorithm A, such as for Cases I-B, I-C and
I-D (not shown here). For the subsequent results presented, all the computations are carried out with
Algorithm A for greater robustness. It may be note that the computations with the M-GFM give rise to
large discrepancies with analysis whether the pressure or velocity is copied from the left or the right sides
(not shown here). This is perhaps not unexpected since the M-GFM is originally designed specifically for
air-water interface where there is a very large sound impedance change across the interface and may not be
so directly applicable to the present gas—gas interaction problem in the absence of such said large sound
impedance change. For this reason, for the following examples of gas—gas interaction, only the results of
I-GFM, GFM and SFM are discussed.

Case I-B: We compute for a more stiff shock tube problem which is taken from Abgrall and Karni [1].
The initial data are

~ [(1,0,500,1.4) if x < 0.5,
(p,u,p,v)—{(1,0,0.2,1.667) if x > 0.5, e

The results at time ¢ = 0.015 using the I-GFM, GFM and SFM are shown in Fig. 4. One can find the the
results of the I-GFM are in good agreement with the exact solution. For the GFM, there are some dis-
crepancies found near the interface. More numerical viscosity is also produced for the SFM, which leads to
greater smearing at the shock front; it requires a much finer distribution of about 800 grid points to ensure
sharper shock front comparable to that of the I-GFM or GFM [1]. For both the GFM and SFM, one can
also observe the overshoots at the end of the rarefaction waves on the velocity profiles. Abgrall and Karni
suggested that these are due to the difficulties associated with the one-phase solver and not the multifluid
modeling. It may be mentioned that, with the I-GFM, the overshoot is replaced by a very mild undershoot
even though all the three methods use the same WENO scheme for the one-phase solver (see the velocity
plot in Fig. 4).
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Case I-C: For this case, we greatly increase the ratio of initial density by up to an order of magnitude, that is

~ [ (1,0,500,1.4) if x<0.8
(p,u,p,y) = { (10,0,0.2,1.667) if x > 0.8. )

There is a greater stiffness in the problem due to the larger difference of densities near the interface. We run
this case to a final time of 0.02. The results using the -GFM, GFM and SFM are shown in Fig 5. One can
find that the results of the I-GFM are in reasonably good agreement with the exact solution. For the GFM ,
there are some discrepancies for the rarefaction wave which shows a non-physical wave moving from the
right to the left. For the SFM, one can find the large numerical viscosity cause much smearing to the shock
front. In addition, the discrepancy at the end of the rarefaction wave increases to an almost unacceptable
level which produces a large hump in the velocity profile.
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Fig. 5. Shock tube problem: Case I-C.
Case I-D: In this case, we change the magnitude of density and y on the right side, such that

(1,0,500,1.4) if x < 0.75 20)

As both the initial difference of density and heat ratio at the interface becomes ever larger, this problem is
very stiff. Fig. 6 shows the typical results by the I-GFM and GFM at time ¢ = 0.02. One can find that the
results with the I-GFM depict still reasonable agreement with the exact solution. For the results obtained
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( ) [(3:984,27.355,1000, 1.667) if x < 0.2, 21
PP T)=90(0.01,0,1,1.4) if x> 0.2.

The t