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Abstract

In the development of numerical schemes for compressible multifluids, the treatment of the interface is very im-

portant. In this paper, we proposed a numerical method based on interface interactions where the ghost cells of the

ghost fluid method, GFM [J. Comput. Phys. 152 (1999) 457], are determined by solving the real interface interaction

and the hypothetical ‘‘ghost’’ interaction. Extensive tests in 1D are carried out and with the 2D examples suggest that

the present scheme is able to handle multifluids problems with large difference of states and material properties at

interface while still keeping to the simplicity of the original GFM.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Various numerical methods have been developed to simulate and study the dynamics of compressible

multifluids in a wide range of high speed flow phenomena, such as the dynamics and the stability of shock
interface interaction, supersonic mixing processes, high speed bubbly flows, underwater explosion and

many others. Invariably, a relative dominant difficulty for these numerical computations is the treatment

of material interfaces. For Eulerian schemes, in general, there are two main approaches: one is the rather

complicated front tracking method in which the interface is tracked as an internal moving boundary and a

non-smeared interface can be materialized [15,16]; the other is the relatively simpler front capturing method

in which the interface is defined as a steep gradient and hence the latter is allowed to be smeared over a

narrow band. For the latter, some specific examples are VOF (volume-of-fluid) (see [1,21,41]) and CIP

(constrained-interpolation-profile) (see [40]). Even though the interest in the present work concerns
compressible multifluids, it may be mentioned that these methods have been also used for incompressible

fluids. Still, there are other methods for interface treatment, such as the immersed boundary method [23]

and phase field method [14], which are usually employed for incompressible multifluids.
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To obtain a non-smeared interface and avoid the complexity of front tracking, the employment of

level set function enables a combination of the above-mentioned two approaches [30], in which the in-

terface is treated as inner boundaries and the front movement is captured by a level set function. In the
original work by Mudler et al. [28], the interface is still allowed to be smeared to a certain thickness

artificially. In [7,6,25,26], smearing at the interface is avoided by solving the Riemann problem to correct

for the numerical flux near the interface. However, as noted by Fedkiw et al. [10], these schemes can be

and is usually fairly intricate and can perhaps only be extended to multidimension with dimensional

splitting in time.

The ghost fluid method (GFM) [10], on the other hand, offers a fairly simple way to implement in

multidimension and with multilevel time integrals. This method relies entirely on the abilities to produce

ghost cells and their states on the respective medium that satisfy the appropriate boundary conditions at the
interface and is proposed to solve the multifluids problem by using standard one-phase solvers for each

medium. Therein also lies in the versatility of the GFM in the accommodation of any reasonable and

consistent one-phase solvers. While the GFM presents promising results, it may yet face some difficulties

when a strong shock wave passes and interacts with the interface [27]. Abgrall and Karni [1] proposed

another similar but simpler single fluid method (SFM). However, the SFM may not be so suitable when

there is density limitation in the equation of states like Tait�s equation for the water medium and it is

unclear if this method can handle those difficulties encountered by the GFM. Fedkiw et al. [11] proposed a

method which incorporates solving the Rankine–Hugoniot relation pertaining to the detonation or def-
lagration discontinuity. In a subsequent review, Fedkiw [12] also suggested solving the Riemann problem at

the interface. In a separate development, to overcome the difficulties encountered for air–water interaction,

Fedkiw [13] presented a modified GFM which also eliminates the oscillations at the air–water interface.

However, this modified GFM seems to be air–water interaction specific such that there is a very large sound

impedance change across the interface. Recently, Liu et al. [27] proposed a method by solving the shock–

shock relation of the Riemann problem near the interface, in which the proposed interface states are ap-

plied to locations some distance away from the interface. As the interaction is not solved at the interface,

this method may give rise to difficulties in maintaining accuracy at the interface and is also relatively much
less straightforward in its implementation and extension to multi-dimensional problems with complex

interfaces.

The motivation of this paper stems from the difficulties and concerns of the presence of a sufficiently

strong shock in multifluids problem with possible large differences of states and material properties at the

interface. We propose a interface interaction method which solves for two types of interaction: one is the

real interaction at the interface, the other is a (hypothetical) ghost interaction between the real fluid

and ghost fluid. Using the method of characteristics and the interaction solved for directly at the interface,

the ghost cell properties for the respective medium are defined within a narrow band next to the interface;
the ghost fluid and the real fluid co-exist and the scheme allows for calculation in the interface region as if in

a single medium domain just like the original GFM. Therefore, by keeping to the simplicity of the GFM, it

is rather straightforward in extending to multi-dimensional problems with complex interfaces. In addition,

as suggested in Fedkiw [12], we also propose improved updating of velocity in the level set function

calculation for a general interface so as to increase the accuracy of the interface location.
2. Preliminaries

2.1. Euler equations

Assuming the fluid is inviscid and compressible, the flow can be described by Euler equations in two

dimensions



X.Y. Hu, B.C. Khoo / Journal of Computational Physics 198 (2004) 35–64 37
q
qu
qv
E

0
BB@

1
CCA

t

þ

qu
qu2 þ p
quv

ðE þ pÞu

0
BB@

1
CCA

x

þ

qv
quv

qv2 þ p
ðE þ pÞv

0
BB@

1
CCA

y

¼ 0; ð1Þ

This set of equations describes the conservation of density q, momentum qv � ðqu; qvÞ and total energy

density E ¼ qeþ 1
2
qu2, where e is the internal energy per unit mass. The one-dimensional Euler equations

are obtained by setting v ¼ 0.

To close this set of equations, the equation of states (EOS) must be defined to give the relation between

pressure, density and internal energy. There are several forms of EOS for different materials, but all can be

written generally as p ¼ pðq; eÞ. If the entropy is kept constant, an isentropic EOS results and can be written

as p ¼ pðq; s0Þ. Here, the pressure is determined by density directly.

2.2. Level set equation

Consider a moving interface CðtÞ separating the domain XðtÞ. We associate XðtÞ with a signed distance

function /ðx; y; tÞ, that is rj/j ¼ 1, called the level set function [30]. Knowing / we may locate the interface

by finding the zero level set of /. That is CðtÞ ¼ fx; y : /ðx; y; tÞ ¼ 0g. So the movement of the interface is

equivalent to the updating of /. We can use the level set equation

/t þ u/x þ v/y ¼ 0 ð2Þ

to update all the level sets, where u and v are the velocity components for the level sets in x and y directions.
For compressible multi-material flows, the interface velocity is usually not known, hence the movement

of the zero level set at interface is approximated by updating level sets on the nearest grid points. As the
speed near the interface may change very rapidly or become a discontinuity as the interface moves, the

solution of Eq. (2) often becomes very flat and/or steep at the interface. Therefore, / needs to be re-ini-

tialized to be kept as the signed distance. The re-initialization equation can be written as

/s þ sgnð/Þ jr/jð � 1Þ ¼ 0; ð3Þ

where s is fictitious time, sgnð/Þ is a sign function and is usually approximated by a smooth function

[31,37]. The equation is updated in fictitious time-step, such as Ds ¼ Dx=2. For a given /, this equation can

be solved to steady state after sufficient s-steps. As re-initialization is needed for the whole domain, the fast

marching method [34] can also be used to increase efficiency, in which case the Eikonal equation jr/j ¼ 1 is

solved directly. For the flows with strong shock waves, / may need to be re-initialized at every time-step.
However, re-initialization at every time-step can lead to the movement of the zero level set and must be

performed extremely carefully; otherwise serious difficulties will result, such as large mass loss.

In the computation of compressible multifluids, smooth or constant extension of a quantity q is

sometimes needed. For example, in the GFM, flow variables are needed to be extended into the ghost cells.

We use the extending equation

qs �N � rq ¼ 0 ð4Þ

to extend quantities to their neighborhood. Here �N is the positive and negative normal direction of the

level set and used to decide the extending direction [10]. þN is used to extend quantities from regions / < 0
to regions / > 0, while �N is used to extend quantities from regions / > 0 to regions / < 0. Again, for a

given q, the extending equation can be solved to steady solution.
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2.3. Ghost cells

As the interface serves to separate two distinct media, the two associated flow fields are to be solved
separately. In a finite difference implementation, special care is needed when the grid points of the difference

stencil is cut by the interface. As such, the states on the other side of the interface can not be used directly

which can and usually leads to serious oscillations. These ‘‘missing’’ points can be filled by the so called

ghost cells (collocated with the real cells but separated by the interface). Therefore, both the two fluids have

their own real cells and ghost cells. The presence of ghost cells allows the two fluids to be calculated

separately as a single fluid and makes the interface ‘‘invisible’’ during the computation.

The ghost cell can be considered to be first introduced to the front tracking method by Glimm et al. [15],

in which the states of the ghost cells are extrapolated from nearby point from the same side. For the GFM
based on level set tracking [10], a narrow band of ghost cells is defined in the vicinity of the interface. At the

ghost cells, the ghost fluid is defined with the same pressure and normal velocity of the real fluid and the

ghost cell density is obtained from constant entropy extrapolation. For the SFM, the ghost cells are defined

by directly copying the pressure, normal velocity and density from the real cells. In the modified GFM [13]

for the air–water interaction, the normal interface velocity is obtained from the water side and the pressure

at the interface is obtained from the air side.
3. The interface interaction method

In our method, the ghost cell states are defined according to the interface interactions. We firstly de-

termine the interface condition. That is, the interface velocity, pressure and densities are obtained by

solving the real interface interaction of the two fluids. Then two hypothetical interactions called ghost

interactions are defined between each ghost fluid and its corresponding real fluid. In each ghost interaction,

the real fluid reaches the same interface condition as that of the real interaction. As higher order extrap-

olation may be used to calculate more accurate states near the interface, the interface condition can also be
obtained with higher order accuracy by involving more nodes. Hence, the ghost cell states are also cor-

respondingly evaluated. Therefore, the present method can lead or be extended to a possible higher order

for multifluids problems. However, for simplicity, the discussion in this paper is based on the first order

extrapolation only.

For this method, we propose two assumptions: (a) the interactions take place at the interface, (b) there is

no entropy exchange between the two fluids throughout the interaction. With the first assumption, unlike

Liu et al. [27] in which the interaction takes place at some distance away from the interface, the interaction

process is controlled by the two fluid states directly at the interface and any other flux into the interaction
region is neglected. The second assumption followed that by Fedkiw et al. [10], where there is no heat

transfer and mass diffusion through the interface and energy exchange at the interface is only via work. This

assumption is applicable even when there is a shock passing through the interface. This is because the

interface interaction can be described by a Riemann problem essentially without any entropy exchange.

Usually, there are many ways to solve the Riemann problem for the interface interaction, such as the exact

Riemann solver and different types of approximate Riemann solvers. In this work, we use the method of

characteristics [33] to solve both the real and ghost interactions at the interface.

3.1. Interface condition

Assume that the adjacent grid cells have two different fluids and their states are Wj ¼ Wl ¼ ðql; ul; plÞ and
Wjþ1 ¼ Wr ¼ ðqr; ur; prÞ, as shown in Fig. 1. According to the first assumption, as first-order extrapolation is

used, the states of the two half-fluid cells nearest to the interface are utilized in the interaction, and the
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interface position remains unchanged (see Fig. 1). In line with the second assumption, different EOSs can be
used for the two particular fluids under investigation. After the interaction, the interface takes on the in-

terface velocity uI and pressure pI. The densities of the two fluids near the interface have also changed to qI;l

and qI;r, respectively. With the method of characteristics, we have the relations

uI ¼ ul �
Z pI

pl

dp
qI;scI;s

; ð5Þ
uI ¼ ur þ
Z pI

pr

dp
qr;scr;s

; ð6Þ
pI ¼ plðqI;l; slÞ; ð7Þ
pI ¼ prðqI;rsrÞ; ð8Þ

where qI;s, cI;s and qr;s, cr;s are the densities and sound speeds determined by the respective isentropic EOS,

p ¼ plðq; slÞ and p ¼ prðq; srÞ. Here sl and sr are the respective constant entropies on the left and right sides

of the interface. The unknown variables uI, pI, qI;l and qI;r can be obtained by solving Eqs. (5)–(8). In

Appendix A.1, the detailed method for the gas–gas and gas–water interface conditions are described.
3.2. Defining the ghost cells

Suppose the real cell state Wl ¼ ðql; ul; plÞ in the left cell j interacts with the ghost cell state
Wgl ¼ ðqgl; ugl; pglÞ in the right cell jþ 1, as shown in Fig. 2. Both the real and ghost cells are treated with the

same EOS as for the left medium. The same assumptions are also applicable to the ghost interaction at the

cell wall jþ 1=2 which takes on the functional role as the interface. After the ghost interaction, the interface

assumes the velocity ug and pressure pg. The densities of the two sides at the cell wall are also changed to qg;l

and qg;gl, respectively. We set the interface velocity, pressure and density on the real fluid side to be equal to
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those after the real interaction, i.e. ug ¼ uI, pg ¼ pI, and qg;l ¼ qI;l; this implies that both the ghost and real

interactions give the same interface condition for the real fluid. Therefore, the ghost cell states can be

obtained by solving

uI ¼ ugl þ
Z pI

pgl

dp
qgl;scgl;s

; ð9Þ
pgl ¼ fsðqgl; sglÞ; ð10Þ

with the given interface condition of uI and pI. Here qgl;s and cgl;s are the density and sound speed deter-

mined by the isentropic EOS on the left medium, and sgl is the ghost cell entropy throughout the inter-
action. However, one may note that there is no unique solution for the ghost interaction problem. While

Eqs. (9) and (10) are satisfied, the ghost cell states may be different by choosing various combinations of

two variables from density, pressure or velocity. Here, we shall consider two simplest cases:

• Algorithm A

We define the ghost cell pressure as that at the interface after the real interaction, i.e.

pgl ¼ pI: ð11Þ

Hence the integral in Eq. (9) becomes zero and the ghost cell velocity is

ugl ¼ uI: ð12Þ

Furthermore, one can find that any ghost cell density can satisfy Eq. (9). We define the ghost cell density

by isentropic extrapolating, i.e. sgl ¼ sl. Therefore, the ghost cell density on the right side can be com-

puted directly by pgl ¼ fsðqgl; slÞ. See Appendix A.2 for details on gas–gas and gas–water interactions.

• Algorithm B

We define the ghost cell pressure and density by constant extending, i.e.

pgl ¼ pl; ð13Þ
qgl ¼ ql: ð14Þ
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Hence, from Eqs. (5) and (9), we obtain the ghost cell velocity as

ugl ¼ 2uI � ul: ð15Þ

As the real and ghost fluids have the same pressure after the ghost interaction (see Fig. 2), via isentropic

condition, we have

qI;l ¼ qg;gl ð16Þ

for both Algorithm A and B. One can find further that the above two cases are equivalent for the ghost

interactions because both the real and ghost fluid give rise to the same interface conditions of velocity,
pressure and densities. It may be noted that the ghost cell states in Algorithm B has the same form of the

boundary conditions as for a moving piston (see also [20,9]. Therefore, one may interpret that the physical

meaning or outcome of the two algorithms as if the interface is treated as a piston and the velocity of the

moving piston is determined by the interface interaction. One may also find that, from the interface con-

dition, the energy exchange rate between the two fluids is pIuI; this is the same as that between the real and

ghost fluids for the same pI and uI are obtained from the ghost interaction. In the numerical tests of Section

6, it is found that Algorithm B faces some difficulties when there is strong rarefaction wave near the in-

terface (Case I-A and Case II-A) even though it works well for the other problems considered. In our
implementation, we primarily use Algorithm A to determine the ghost cell states for its greater robustness.

It may noted that our attention is brought to the very recent work of Arienti et al. [2] who used a piston-like

boundary to solve for the fluid-structure interaction problem. However, it differs from Algorithm B in that

the interface velocity for the latter is calculated by solving the Riemann problem not applicable to former.

Similarly, for the real cell state Wr ¼ ðqr; ur; prÞ in cell jþ 1, the ghost cell state Wgr ¼ ðqgr; ugr; pgrÞ in cell j
can also be defined by a ghost interaction with the EOS on the right. To avoid possible ‘‘over heating’’

errors, an isobaric fix [9,10] is introduced from j� 1 to j and jþ 2 to jþ 1 before solving the interface

interaction problem. For the gas medium, the isentropic fix for one node near the interface seems sufficient
for our method. For the water medium, the isobaric fix is not used as Tait�s equation is only dependent on

pressure. For nodes to the left of j or the right of jþ 1, the ghost states are simply extended or isentropic

extrapolated from Wgl and Wgr, respectively. Choosing either presents no significant difference for the final

results.

Here, we make the following observations:

• Besides the simplicity, the other reason we propose Algorithm A among the various non-unique solu-

tions of Eqs. (9) and (10) is because of its generality. In Algorithm A the ghost density can be arbitrarily

defined while still keeping to the interface condition. This makes the algorithm easily employed with dif-
ferent types of EOS even those with density limitation.

• Although the above algorithms are proposed based on the method of characteristics, it may be noted

that other interface interaction solvers can also be implemented. For example, algorithms can be formu-

lated based on exact or even other approximate Riemann solver in a similar fashion as for the present

method of characteristics. The basic idea remains that of real and ghost interactions giving rise to the

same interface condition as for the real fluid and hence determining the ghost cell properties. In this pa-

per, the method of characteristics is suggested for its simplicity and ease of implementation. As will be

shown in Section 6, the method of characteristics is deemed sufficient to produce reasonable results
which concur with analysis even for very stiff problems.

• In the present method, as the ghost cell density is different from the real density, there is strictly no con-

servation kept at each time-step. However, we expect the conservation error can be reduced or mitigated

because the conservation properties is also controlled by a moving piston boundary condition. This will

be discussed further in Section 6.4 based on specific numerical examples.
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4. Implementation in multidimension

For one dimension, the above interface interaction method is simple and easily implemented. For higher
dimensions, as more velocities components are involved, we only need to consider the interface interaction

in the normal direction to the interface and hence the normal velocity component is required. In the

procedure below, with respect to the direction normal to the interface (or interaction), we shall define the

cells with / < 0 as on the left and the cells with / > 0 as on the right.

1. Extend p; q; u; v along the normal direction to the ghost cells in a narrow band near the interface for the

two fluids using Eq. (4).

2. Calculate the normal velocities of the all the cells in the narrow band.

3. Solve the interface conditions for the real interaction along the normal direction via Eq. (5) to Eq. (8).
4. Compute the ghost cell state values by solving the ghost interaction given in Eq. (9) to Eq. (15).

5. Update the ghost cell velocity components by replacing the normal velocity components obtained from

the ghost interaction.

6. Update the real cell values of the two fluids separately using the respective one-phase solvers.
5. Modification of level set updating

As the interface velocity has been computed at the interface, the zero level set is then moving at the exact

interface velocity. Therefore, we update the zero level set function in Eq. (2) with solved interface velocity.

This has also been employed by Fedkiw et al. [11] for the detonation waves and suggested by Fedkiw [12].

As the more accurate advection velocity is used, the re-initialization procedure is not implemented for the

immediate region next to the interface. The re-initialization is only needed for the regions away from

narrow band to maintain a signed distance to the interface. The level set updating with the main solver is

given as follows:

1. Calculate the interface conditions for all cells in the narrow band and set the calculated interface velocity
for level set updating.

2. Set the ghost cell values, and update the whole flow fields.

3. Update the level set via Eq. (2) only in the narrow band.

4. Re-initialize the level set via Eq. (3) for cells outside the narrow band.

The TVD Runge–Kutta method [35] may be used for time integration where a full time-step is made up of

several sub-time-steps. While the interface condition and the ghost cell values may be computed at every

sub-time-step, the the level set updating and re-initialization are computed once in the full time-step. As the

calculated interface velocities in the narrow band are very close, the s-steps for Eq. (3) can be reduced
comparing to that of the GFM [10]. Usually, one can only requires about five s-steps to give a good signed

distance function.
6. Numerical examples

The following numerical examples are provided to illustrate the ability of the interface interaction

method, which is denoted as I-GFM, to handle multifluids with large difference of states and material
properties at the interface. We shall denote the original ghost fluid method as GFM [10], the single fluid

method as SFM [1], and the modified ghost fluid method as M-GFM [13]. For all the test cases, unless

otherwise stated, the one-phase calculations are carried with fifth-order WENO-LF which is a robust high

order conservative scheme [22,36] and third-order TVD Runge–Kutta method [35]. Before the three sub-
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time-steps of TVD Runge–Kutta method, the interface condition is solved once. After the ghost states are

defined, the time-steps for the two fluid regions including ghost cells are calculated separately under

Courant–Friedrich–Lewy time-step restriction; the smaller one is chosen as the overall time-step. For
the one-dimensional examples, unless otherwise stated, the number of grid points employed is 200 and

the referenced exact solution is sampled on 200 grid points too. All the runs are carried out with the CFL of

0.6.

6.1. Shock tube problems (I)

Case I-A: We consider a air–helium shock tube problem with the following initial data:

ðq; u; p; cÞ ¼ ð1; 0; 1; 1:4Þ if x < 0:5;
ð0:125; 0; 0:1; 1:667Þ if x > 0:5:

�
ð17Þ

The typical results at time t ¼ 0:15 computed with the I-GFM with Algorithm A (denoted as I-GFM-A),

GFM, SFM and I-GFM with Algorithm B (denoted as I-GFM-B) are shown in Fig. 3. One can observe
that the I-GFM-A shows good compatibility with the original GFM and gives almost identical and correct

shock strength and speed. The interface position is also captured accurately. One may also note that the

SFM exhibits a slight degree of smearing at the contact discontinuity of the density plot. While the I-GFM-

B predicts a broadly correct solution, it introduces larger errors at the location of the rarefaction wave.

Further numerical tests show that the stronger the rarefaction wave near the interface, the larger is the

discrepancy from analysis. For interactions with very strong rarefaction wave, such as for Case II-A in

Section 6.3, Algorithm B faces much difficulties. The results of other problems without the presence of

strong rarefaction waves depict almost similar behavior as for Algorithm A, such as for Cases I-B, I-C and
I-D (not shown here). For the subsequent results presented, all the computations are carried out with

Algorithm A for greater robustness. It may be note that the computations with the M-GFM give rise to

large discrepancies with analysis whether the pressure or velocity is copied from the left or the right sides

(not shown here). This is perhaps not unexpected since the M-GFM is originally designed specifically for

air–water interface where there is a very large sound impedance change across the interface and may not be

so directly applicable to the present gas–gas interaction problem in the absence of such said large sound

impedance change. For this reason, for the following examples of gas–gas interaction, only the results of

I-GFM, GFM and SFM are discussed.
Case I-B: We compute for a more stiff shock tube problem which is taken from Abgrall and Karni [1].

The initial data are

ðq; u; p; cÞ ¼ ð1; 0; 500; 1:4Þ if x < 0:5;
ð1; 0; 0:2; 1:667Þ if x > 0:5:

�
ð18Þ

The results at time t ¼ 0:015 using the I-GFM, GFM and SFM are shown in Fig. 4. One can find the the

results of the I-GFM are in good agreement with the exact solution. For the GFM, there are some dis-

crepancies found near the interface. More numerical viscosity is also produced for the SFM, which leads to

greater smearing at the shock front; it requires a much finer distribution of about 800 grid points to ensure

sharper shock front comparable to that of the I-GFM or GFM [1]. For both the GFM and SFM, one can

also observe the overshoots at the end of the rarefaction waves on the velocity profiles. Abgrall and Karni

suggested that these are due to the difficulties associated with the one-phase solver and not the multifluid

modeling. It may be mentioned that, with the I-GFM, the overshoot is replaced by a very mild undershoot
even though all the three methods use the same WENO scheme for the one-phase solver (see the velocity

plot in Fig. 4).
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Case I-C:For this case, we greatly increase the ratio of initial density by up to an order ofmagnitude, that is

ðq; u; p; cÞ ¼ ð1; 0; 500; 1:4Þ if x < 0:8
ð10; 0; 0:2; 1:667Þ if x > 0:8:

�
ð19Þ

There is a greater stiffness in the problem due to the larger difference of densities near the interface. We run
this case to a final time of 0.02. The results using the I-GFM, GFM and SFM are shown in Fig 5. One can

find that the results of the I-GFM are in reasonably good agreement with the exact solution. For the GFM ,

there are some discrepancies for the rarefaction wave which shows a non-physical wave moving from the

right to the left. For the SFM, one can find the large numerical viscosity cause much smearing to the shock

front. In addition, the discrepancy at the end of the rarefaction wave increases to an almost unacceptable

level which produces a large hump in the velocity profile.
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Fig. 5. Shock tube problem: Case I-C.
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Case I-D: In this case, we change the magnitude of density and c on the right side, such that

ðq; u; p; cÞ ¼ ð1; 0; 500; 1:4Þ if x < 0:75
ð30; 0; 0:2; 2:0Þ if x > 0:75:

�
ð20Þ

As both the initial difference of density and heat ratio at the interface becomes ever larger, this problem is

very stiff. Fig. 6 shows the typical results by the I-GFM and GFM at time t ¼ 0:02. One can find that the

results with the I-GFM depict still reasonable agreement with the exact solution. For the results obtained
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with the GFM, the isobaric fix is deliberately turned off. One can easily observe that the rarefaction wave

and density jump at the interface bear some differences from the exact solution. It may be noted that if the

isobaric fix has been employed as in the usual case, the discrepancies are still present if not the magnitude

has become much larger (not shown here). For the SFM, the program faces difficulties and fails to produce

meaningful results.
It is also interesting to note that if the computational implementation is modified, such as the one-phase

solver is changed to WENO-LLF, the time-steps are calculated before the ghost states are defined or the

interface condition is solved for each sub-time-step of TVD Runge–Kutta method, the GFM or SFM

may produce some limited differences with possible improvement in the results for the present tests Case I-B

to I-D (not shown here). For those cases with some improvement observed, it is found that the incorpo-

ration of I-GFM with the same implementations enables even better results. A typical example illustrating

some dependency on the actual one-phase solver selected is provided below as in Case II-D, which is

perhaps not surprising unexpected; see also Liu et al. [27] on a short discourse on their use of MUSCL-
based GFM.

6.2. Shock interface interaction problems (II)

Case II-A: We consider a strong shock wave with a pressure ratio of 1000 propagating from a high

density gas to a low density gas. The initial data is similar to that from Liu et al. [27] except that the present

density ratio is even higher:
1
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ðq; u; p; cÞ ¼ ð3:984; 27:355; 1000; 1:667Þ if x < 0:2;
ð0:01; 0; 1; 1:4Þ if x > 0:2:

�
ð21Þ

The typical results shown using the I-GFM, GFM and SFM are plotted in Fig. 7 for t ¼ 0:01. For the

I-GFM, the comparison with exact solution shows good agreement. For both the GFM and SFM, there are

some discrepancies of the calculated interface position and shock wave speed when compared to the exact

solution. It is also apparent that the GFM depicts some undershoot or overshoot towards the reflected
rarefaction wave end (see the velocity and density plots in Fig. 7).
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Fig. 7. Shock interface interaction problem: Case II-A.



Case II-B: We consider a strong shock wave with a pressure ratio of 100 propagating from a helium-like

gas to an air-like gas. The initial conditions are very similar to that taken from Liu et al. [27] except that the

density ratio is more severe with much larger quantity pertaining to the air-like gas. The initial data are

ðq; u; p; cÞ ¼ ð0:384; 27:077; 100; 1:667Þ if x < 0:6;
ð10; 0; 1; 1:4Þ if x > 0:6:

�
ð22Þ
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The results obtained at time t ¼ 0:04 using the I-GFM, GFM and SFM are shown in Fig. 8. The results of

the I-GFM compare well with the exact solution. Both the GFM and SFM predict the transmitted shock

and interface speed which have larger variance with the analysis.
Case II-C: The initial density ratio at the interface is increased by another order of magnitude together

with an increase of the heat ratio. The initial condition is given as

ðq; u; p; cÞ ¼ ð0:384; 27:077; 100; 1:667Þ if x < 0:6:
ð100; 0; 1; 3:0Þ if x > 0:6:

�
ð23Þ

Fig. 9 shows the results using the I-GFM and SFM at time t ¼ 0:03. The results with I-GFM still compare

very well with the exact solution. On the other hand, the computation via the GFM faces difficulties. For

the SFM, it can still compute for this problem but with much smeared interface and transmitted shock wave

front (see Fig. 9(c) and (d)). It is noted that the Algorithm B can calculate for Case II-B and Case II-C

without difficulty and gives almost identical results as for Algorithm A since there is only shock–shock

interaction involved at the interface.

Case II-D: We consider the two blast wave interaction problem which is taken from Woodward and
Colella [39]. This is an one-phase problem and the two interfaces are located near the ends of the domain.

The initial data are

ðq; u; p; cÞ ¼
ð1; 0; 1000; 1:4Þ if x < 0:1;
ð1; 0; 0:01; 1:4Þ if 0:1 < x < 0:9;
ð1; 0; 100; 1:4Þ if x > 0:9;

8<
: ð24Þ
x

D
en

si
ty

0 0.25 0.5 0.75 1
0

50

100

150

200

250

Theo
SFM

x

V
el

o
ci

ty

0 0.25 0.5 0.75 1
0

5

10

15

20

25

30

Theo
SFM

x

V
el

o
ci

ty

0 0.5 0.75 1
0

5

10

15

20

25

30

Theo
I-GFM

x

D
e

ns
ity

0 0.25 0.5 0.75 1
0

50

100

150

200

250

Theo
I-GFM

0.25

(a) (b)

(d)(c)

Fig. 9. Shock interface interaction problem: Case II-C.
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and reflective boundary condition is applied at both x ¼ 0 and x ¼ 1. We examine the numerical solutions

on a 400 grid points domain and the referenced ‘‘exact’’ solution is computed by the I-GFM with 1600

points. Fig. 10 gives the results by the I-GFM, GFM and SFM at time t ¼ 0:038. One can find that while
similar results compared with the original WENO scheme (Fig. 7 of [22]) for the regions away from the

interfaces are obtained, the I-GFM enables two non-smeared density jumps at the contact discontinuities

which would require much finer grids with 1200 or more points for Woodward and Colella [39] and Jiang

and Shu [22] to achieve similar level of accuracy by their schemes.
x

D
en

si
ty

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

7

Exact
SFM

0.25 0.5 0.75 1 xD
en

si
ty

0
0.

25
0.

5
0.

75
1

01234567

xV
el

o
ci

ty

0 0.25 0.5 0.75 1Ex act
GFM

x

D
en

si
ty

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

7

Exact
I-GFM

x

V
el

o
ci

ty

0 0.25 0.5 0.75 1
0

4

8

12

16

Exact
I-GFM

(a)

(c)

(e) (f)

(d)

(b)
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Fig. 11. Solution of Case II-D with WENO-LLF scheme.
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For the GFM, there appears to be a non-physical ‘‘glitch’’ in the velocity profile near the right shock

front since the shock interactions should not have propagated to this region as yet. However, by carefully

tracking and analyzing the evolution process, it is found the ‘‘glitch’’ originates from a strong velocity

overshoot produced in the solution of the right shock tube problem and reflected from the right boundary;

this is found to be largely mitigated for the I-GFM. If the one-phase solver is changed to WENO-LLF, as
the strong velocity overshoot does not occur, the ‘‘glitch’’ disappears almost completely (see Fig. 11). If the
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I-GFM is implemented with WENO-LLF, there is further improvement (see also Fig. 11). It is noted that

the slight overshoot at the right shock wave is eliminated. As the SFM directly use the real states as for the

ghost cell states, when the method is used to solve one-phase problem with contact discontinuity, it behaves
like an the original one-phase solver and gives the results with smeared density jumps. While a similar

strong velocity overshoot occurs and is reflected from the left boundary, there is a ‘‘glitch’’ at about x ¼ 0:7.
However, this ‘‘glitch’’ is diminished but still not totally eliminated when WENO-LLF is used (see Figs. 10

and 11).

By this example case, one may suggest that, even though the WENO-LF is supposed to ensure ro-

bustness by defining a numerical flux based on global maximum wave speed, it seems to produce more

discrepancies in the multifluids computations than the WENO-LLF. While the GFM may sometimes

produces improved results by using WENO-LLF, our numerical experiments suggest a much less depen-
dency on the choice of WENO-LF or WENO-LLF for the SFM and I-GFM. Furthermore, the I-GFM

seems to be able to capture the correct solution more accurately irrespective of the two schemes.

6.3. Shock interaction with water (III)

In this section, two problems of shock interaction with water are computed. In both cases, Tait�s EOS is

used for the water medium. The state values are non-dimensionalized with respect to the property of water

at 1 atmosphere and length scale 1 m. Only M-GFM which is specially formulated for the air–water
problems and the I-GFM are used to calculate these cases.
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Fig. 12. Problem on shock interaction with water: Case III-A.
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Fig. 13. Problem on shock interaction with water: Case III-B.
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Case III-A: This underwater explosion problem is taken from Tang and Huang [38]. The initial con-

dition is given as

ðq; u; p; cÞ ¼ ð0:01; 0; 1000; 2Þ if x < 0:5;
ð1; 0; 1; 7:15Þ if x > 0:5:

�
ð25Þ

Fig. 12 shows the computed results using I-GFM and M-GFM at time t ¼ 0:0008. One can find that both

methods give essentially the correct shock wave strength and speed in water. The I-GFM, however, seems

to present a slightly more accurate solution for the rarefaction wave.

Case III-B: We increase the energy of the explosives such that the initial pressure ratio is increased by at

least one order of magnitude. The initial conditions are

ðq; u; p; cÞ ¼ ð0:5; 100; 20000; 2:5Þ if x < 0:5;
ð1; 0; 1; 7:15Þ if x > 0:5:

�
ð26Þ

The obtained results by the I-GFM and M-GFM at time t ¼ 0:001 are shown in Fig. 13. Note that the

strength and speed of the two shock waves are reasonably predicted with the I-GFM. For the M-GFM, one
can find that the reflected shock wave in the explosive products has a non-physical front. These results

suggest that the M-GFM may produce large errors when implemented directly to the gas–water interaction

with less sound impedance difference than that between air and water. In Appendix A.1, one can further

find that the M-GFM is a special case of the linearized form of I-GFM.
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6.4. Conservation and convergence test

In this section, we perform the conservation and convergence tests for the I-GFM. Based on the par-
ticular Case I-A, we compute and compare the conservation errors incurred by the I-GFM, GFM and

SFM. Then the convergence property of the I-GFM on mesh refinement is calculated and discussed for the

other typical Case I-A to Case I-D.

For the above-mentioned Case I-A to Case I-D, the relative mass and energy variations for the separated

left medium and right medium during the computation can be simply calculated by

V ¼
ð
Pj¼Kn

j¼0 Un
j þ f nUn

I ÞDx
ð
Pj¼K0

j¼0 U 0
j þ f 0U 0

I ÞDx
; ð27Þ

where Uj is the mass density or energy density on cell j, UI is the corresponding quantity at the interface, the

superscript 0 and n are for the initial condition and the nth time-step values, respectively, K is the number of

cells fully occupied by the left or right medium and f is its volume fraction at the interface, which is based
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Fig. 14. Relative conservation variation of mass and energy for Case I-A.
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this additional step undertaken, it has led to an improvement of results [29]. For the I-GFM, as it still

predicts a reasonably accurate solution with smaller conservation errors, it seems that a similar post-

processing procedure can be effectively incorporated and be developed to be a fully conservative interface
interaction method as well.

6.5. Collapse of 2D air cavity collapse in water

To demonstrate the implementation of the interface interaction method in 2D and verify the assembled

code, we perform a numerical simulation of an experiment carried out previously by Bourne and Field [5]: a
Fig. 15. Collapse of air cavity in water: (a) computational domain and initial conditions, (b) density contours at

t ¼ 2:0� 10�2 ð2:0 ls), (c) density contours at t ¼ 3:1� 10�2 ð3:1 lsÞ, and (d) density contours at t ¼ 3:7� 10�2 ð3:7 ls).
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6 mm cylinder air cavity in gelatine/water is impacted by a 1.9 GPa shock. The experimental results show

that a very high speed jet is formed which then hit the downstream cavity wall. A very high pressure and

temperature are also produced at the impact point of the high speed jet. Bourne and Field also observed
luminescence in the interaction process. There have been a number of simulations on cylinder cavity col-

lapse under shock [4,8,18]. According to Bourne and Field�s experiments, the schematic of the problem is

given in Fig. 15(a). All the boundaries are outflow boundaries with zero gradient. The non-dimensionlized

(based on the property of water at 1 atmosphere and length scale 1 mm) initial data are

ðq ¼ 1; u ¼ 0; v ¼ 0; p ¼ 1; c ¼ 7:15Þ pre-shocked water;
ðq ¼ 1:31; u ¼ 67:32; v ¼ 0; p ¼ 19000; c ¼ 7:15Þ post-shocked water;
ðq ¼ 1:2� 10�3; u ¼ 0; v ¼ 0; p ¼ 1; c ¼ 1:4Þ air bubble;

/ ¼ �3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
level set:

8>><
>>: ð29Þ

Here /6 0 represents the air and / > 0 represents the water. Fig. 15(a) shows an air cavity of radius 3 at
ð0; 0Þ is to be impacted by a shock wave initiated at x ¼ 2:4. A 400� 400 nodes grid is uniformly distributed

in the respective x and y directions and the same fifth-order WENO-LF is also used as the one-phase solver.

Fig. 15(b)–(d) shows the typical density contours at t ¼ 0:02 ð2:0 lsÞ, t ¼ 0:031 ð3:1 lsÞ and

t ¼ 0:037 ð3:7 lsÞ after the shock wave impinges on the air cavity. The results are in good agreement with

Bourne and Field�s [5] observation (their Fig. 5). In Fig. 15(b), the reflected incident wave shows an

anomalous reflection pattern. One can also see such similar features as obtained by Grove and Manikoff

[18] though for different initial condition. As the cavity collapses the high speed jet is also formed. Fig. 15(c)

shows the instance just before the jet making impact on the downstream cavity wall. This result is also in
Fig. 16. Air–helium interaction problem: (a) computational domain and initial conditions, (b) density contours at t ¼ 1:238 ð427 ls).
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reasonable agreement with the calculations of Ball et al. [4] using a completely different numerical scheme

called the free Lagrange method. However, the present calculated highest jet velocity just before the impact

is about 2800 m/s which is some 200 m/s larger than that reported by Ball et al. As the jet impacts on the
down stream cavity wall, Ball et al. mentioned that a part of the cavity mass is trapped between the jet nose

and cavity wall. However, this is not specifically observed or discussed in the experiments and our nu-

merical results indicate likewise. Our results further show that, after the jet impact, while the resultant

strong shock wave interacts with the generated lobes, two secondary jets are also produced (see Fig. 15(d));

the jets subsequently bisect the lobes again to form four separated cavities (not shown here). Finally, when

these cavities reaches its smallest volume at about time t ¼ 4:3 ls, the calculated temperature in the col-

lapsed cavities is higher than 10,000 K which may be the reason for the presence of luminescence observed

in the experiments.

6.6. Air–helium shock interaction

In this 2D problem, we compute for a Mach 1.22 air shock wave interaction with a cylindrical helium

bubble. Hass and Sturtevant�s [19] experimental results showed that, under the air shock pressure, the

helium bubble collapses and a jet is produced. Numerical computations for the same problem can be found

in Quirk and Karni [32], Lian and Xu [24] and Bagabir and Drikakis [3]. This problem has also been

computed by the original GFM [10]. Fig. 16(a) shows the schematic of the problem, where the upper and
the lower boundaries are reflection boundaries of a solid wall. The left and the right boundary condition are

outflow boundaries with zero gradient. The non-dimensionlized (based on the property of air at 1 atm and

length scale of 1 mm) initial conditions are

ðq ¼ 1; u ¼ 0; v ¼ 0; p ¼ 1; c ¼ 1:4Þ pre-shocked air;
ðq ¼ 1:3764; u ¼ 0:394; v ¼ 0; p ¼ 1:5698; c ¼ 1:4Þ post-shocked air;
ðq ¼ 0:138; u ¼ 0; v ¼ 0; p ¼ 1; c ¼ 1:667Þ helium bubble;

/ ¼ �25þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 150Þ2 þ y2

q
level set;

8>>><
>>>:

ð30Þ
Fig. 17. Level sets near the interface.
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where /6 0 represents the helium and / > 0 represents the air, depicting a helium bubble of radius 25 at

(0,150) which is to be impacted by a shock wave initiated at x ¼ 100. The computation has been carried out

with four increasing resolutions of Dx ¼ Dy ¼ 2; 1; 0:5; 0:25; this is also to ensure grid invariance as simi-
larly done in Fedkiw et al. [10]. Similarly, no isobaric fix is used in the calculation to facilitate a quantitative

comparison below. It may be added that a separate calculation with isobaric fix has produced essentially

similar results with all the characteristics (not shown here); this can be possibly attributed to the not-too-

strong incident shock of Mach 1.22.

Fig. 16(b) shows the density contour corresponding to t ¼ 1:238ð427 lsÞ after the air shock makes

impact on the helium bubble (Dx ¼ Dy ¼ 0:25). The calculated bubble shape and jet shape are in good

agreement with Quirk and Karni�s AMR computed results (their Fig. 9(h)) and Hass and Sturtevant�s [19]
experiment (their Fig. 7(h)). Comparing to the results of the original GFM (Fig. 30 in [10]), one can suggest
that the I-GFM calculates more finely the interface details including the jet size and the shape of jet head.

This is perhaps to be expected since the interface velocity is accurately calculated and is incorporated di-

rectly into the level set evolution. Instabilities are also found at the interface, but, just as in the experiments,

they are not as strong as the results of Lian and Xu [24] (their Fig. 4.2) obtained with a front capturing

method. Fig. 17 gives the several level sets near the interface at the same time as in Fig. 16(b). It is found

that while the accuracy of the zero level set location is kept, the initial property of signed distance is

preserved by the equal spacing of the neighboring level sets. Finally, Fig. 18 shows the relative variation of

the total helium mass during the computation for the four different resolutions. On can find that the mass
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Fig. 18. Normalized helium mass variation from t ¼ 0 to about t ¼ 1:6 ð550 ls): (a) Dx ¼ Dy ¼ 2, (b) Dx ¼ Dy ¼ 1, (c) Dx ¼ Dy ¼ 0:5,

and (d) Dx ¼ Dy ¼ 0:25.
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conservation error is very small and manageable. This is especially so for the smallest grid size of 0.25.

From Fig. 18, the calculated time-averaged relative percentage errors in helium mass (taken w.r.t. the initial

quantity at t ¼ 0) by our I-GFM are significantly lower than that of the GFM; these values are 0.53%,
0.37%, 0.28% and 0.12% corresponding to the resolutions Dx ¼ Dy ¼ 2; 1; 0:5; 0:25, respectively (which can

be compared to 2.5%, 0.78%, 0.42% and 0.43%, respectively, found in [10]). These results further indicates

that the I-GFM has good conservation properties.
7. Concluding remarks

In this paper, we developed an interface interaction method based on solving the real and ghost interface
interactions. As the method is constructed and modified with respect to the GFM and level set technique, it

is simple for implementation and extension to higher dimensions. In the said method, the interface velocity

is accurately calculated and the conservation properties are enhanced by the moving piston boundary

condition. A number of numerical examples in one dimension are studied with comparisons to exact so-

lution while 2D problems are calculated and compared to experiments and previous methods. The results

show that the present method exhibits a greater degree of robustness than the original GFM and SFM. In

addition, the interface interaction method is performed only in a narrow band of the mesh and hence is very

efficient. The computational cost is almost like the original GFM in most cases. Finally, as the states for
solving the interface conditions can be approximated by high order extrapolation, our method may suggest

a way for higher accurate schemes for multifluids flows.
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Appendix A. Gas–gas and gas–water interaction

A.1. Interface condition

An ideal gas has the EOS of the form

p ¼ ðc� 1Þqe; ðA:1Þ

where c is the heat ratio. Tait�s EOS for water is

p ¼ B
q
qo

� �c

� Bþ A; ðA:2Þ

where c ¼ 7:15, B ¼ 3:31� 108 Pa and A ¼ 1� 105 Pa. The isentropic form of ideal gas EOS and the water

EOS both can also be written as

f ðpÞ
qc

¼ Const:; ðA:3Þ
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where f ðpÞ ¼ p is for an ideal gas and f ðpÞ ¼ p þ B� A is for water. And the equivalent form relating the

pressure and sound speed c is

S ¼ 2

c� 1
ln cþ 1

c
ln f ðpÞ: ðA:4Þ

Here S is a constant and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cf ðpÞ=q

p
. To solve the interface condition of Eq. (5) to Eq. (8) can be re-

written as

uI ¼ ul �
2cl

cl � 1

f ðpIÞ
f ðplÞ

� �ðcl�1Þ=2cl
"

� 1

#
; ðA:5Þ

uI ¼ ur þ
2cr

cr � 1

f ðpIÞ
f ðprÞ

� �ðcr�1Þ=2cr
"

� 1

#
: ðA:6Þ

Eqs. (A.5) and (A.6) can be solved by Newton�s method easily.

For flows with limited change of density and sound speed across the interface, the integrals in Eqs. (5)

and (6) can be linearized to

uI ¼ ul �
pI � pl
qlcl

; ðA:7Þ

uI ¼ ur þ
pI � pr
qrcr

: ðA:8Þ

Then uI and pI can be calculated directly as

uI ¼
qlclul þ qrcrur þ pl � pr

qlcl þ qrcr
; ðA:9Þ

pI ¼
qlclpr þ qrcrpl þ qlclqrcrðul � urÞ

qlcl þ qrcr
: ðA:10Þ

For air–water interaction with limited change of pressure and velocity across the interface, the linearized

form Eqs. (A.9) and (A.10) degenerates to the modified GFM for the relation qwatercwater � qaircair.
A.2. Ghost cell values

The ghost cell pressure and velocity are directly copied from the interface conditions. The ghost density
qgl is solved by relation Eq. (A.3), that is

qgl ¼ ql

f ðpglÞ
f ðplÞ

� �1=c

: ðA:11Þ
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